Image Quality And System Performance Ii

Author: D. Rene Rasmussen
Publisher: Society of Photo Optical
ISBN: 9780819456410
Size: 11.96 MB
Format: PDF, Kindle
View: 4553

Download Read Online

Image Quality And System Performance Ii. Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.

Improving Image Quality In Multi Channel Printing Multilevel Halftoning Color Separation And Graininess Characterization

Author: Paula Žitinski Elías
Publisher: Linköping University Electronic Press
ISBN: 9176855589
Size: 40.99 MB
Format: PDF
View: 6135

Download Read Online

Improving Image Quality In Multi Channel Printing Multilevel Halftoning Color Separation And Graininess Characterization. Color printing is traditionally achieved by separating an input image into four channels (CMYK) and binarizing them using halftoning algorithms, in order to designate the locations of ink droplet placement. Multi-channel printing means a reproduction that employs additional inks other than these four in order to augment the color gamut (scope of reproducible colors) and reduce undesirable ink droplet visibility, so-called graininess. One aim of this dissertation has been to characterize a print setup in which both the primary inks CMYK and their light versions are used. The presented approach groups the inks, forming subsets, each representing a channel that is reproduced with multiple inks. To halftone the separated channels in the present methodology, a specific multilevel halftoning algorithm is employed, halftoning each channel to multiple levels. This algorithm performs the binarization from the ink subsets to each separate colorant. Consequently, the print characterization complexity remains unaltered when employing the light inks, avoiding the normal increase in computational complexity, the one-to-many mapping problem and the increase in the number of training samples. The results show that the reproduction is visually improved in terms of graininess and detail enhancement. The secondary color inks RGB are added in multi-channel printing to increase the color gamut. Utilizing them, however, potentially increases the perceived graininess. Moreover, employing the primary, secondary and light inks means a color separation from a three-channel CIELAB space into a multi-channel colorant space, resulting in colorimetric redundancy in which multiple ink combinations can reproduce the same target color. To address this, a proposed cost function is incorporated in the color separation approach, weighting selected factors that influence the reproduced image quality, i.e. graininess and color accuracy, in order to select the optimal ink combination. The perceived graininess is modeled by employing S-CIELAB, a spatial low-pass filtering mimicking the human visual system. By applying the filtering to a large dataset, a generalized prediction that quantifies the perceived graininess is carried out and incorporated as a criterion in the color separation. Consequently, the presented research increases the understanding of color reproduction and image quality in multi-channel printing, provides concrete solutions to challenges in the practical implementation, and rises the possibilities to fully utilize the potential in multi-channel printing for superior image quality.

Camera Image Quality Benchmarking

Author: Jonathan B. Phillips
Publisher: John Wiley & Sons
ISBN: 1119054524
Size: 53.49 MB
Format: PDF, ePub, Mobi
View: 2472

Download Read Online

Camera Image Quality Benchmarking. The essential guide to the entire process behind performing a complete characterization and benchmarking of cameras through image quality analysis Camera Image Quality Benchmarking contains the basic information and approaches for the use of subjectively correlated image quality metrics and outlines a framework for camera benchmarking. The authors show how to quantitatively compare image quality of cameras used for consumer photography. This book helps to fill a void in the literature by detailing the types of objective and subjective metrics that are fundamental to benchmarking still and video imaging devices. Specifically, the book provides an explanation of individual image quality attributes and how they manifest themselves to camera components and explores the key photographic still and video image quality metrics. The text also includes illustrative examples of benchmarking methods so that the practitioner can design a methodology appropriate to the photographic usage in consideration. The authors outline the various techniques used to correlate the measurement results from the objective methods with subjective results. The text also contains a detailed description on how to set up an image quality characterization lab, with examples where the methodological benchmarking approach described has been implemented successfully. This vital resource: Explains in detail the entire process behind performing a complete characterization and benchmarking of cameras through image quality analysis Provides best practice measurement protocols and methodologies, so readers can develop and define their own camera benchmarking system to industry standards Includes many photographic images and diagrammatical illustrations to clearly convey image quality concepts Champions benchmarking approaches that value the importance of perceptually correlated image quality metrics Written for image scientists, engineers, or managers involved in image quality and evaluating camera performance, Camera Image Quality Benchmarking combines knowledge from many different engineering fields, correlating objective (perception-independent) image quality with subjective (perception-dependent) image quality metrics.